Sea $P(x)$ un polinomio de grado $n\gt 1$ con coeficientes enteros y sea $k$ un entero positivo. Consideremos el polinomio $Q(x)=P(P(\cdots P(P(x))\cdots))$, donde $P$ aparece $k$ veces. Demostrar que hay a lo sumo $n$ enteros $t$ tales que $Q(t)=t$.