Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1931
Hallar todas las funciones $f:(0,\infty)\to(0,\infty)$ tales que \[\frac{f(w)^2+f(x)^2}{f(y^2)+f(z^2)}=\frac{w^2+x^2}{y^2+z^2}\] para todos los números reales positivos $w,x,y,z$ que satisfacen $wx=yz$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre