Sea $f:\mathbb{Z}\to\mathbb{N}$ una función del conjunto de los enteros al conjunto de los enteros positivos. Se supone que para cualesquiera dos enteros $m$ y $n$, la diferencia $f(m)-f(n)$ es divisible por $f(m-n)$. Demostrar que para todos los enteros $m$ y $n$ con $f(m)\leq f(n)$, el número $f(n)$ es divisible por $f(m)$.