Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1962
Sea $\mathbb{Q}_{\gt 0}$ el conjunto de los números racionales mayores que cero. Sea $f:\mathbb{Q}_{\gt 0}\to\mathbb{R}$ una función que satisface las tres siguientes condiciones:
  • $f(x)f(y)\geq f(xy)$ para todo $x,y\in\mathbb{Q}_{\gt 0}$;
  • $f(x+y)\geq f(x)+f(y)$ para todo $x,y\in\mathbb{Q}_{\gt 0}$;
  • existe un número racional $a\gt1$ tal que $f(a)=a$.
Demostrar que $f(x) = x$ para todo $x\in\mathbb{Q}_{\gt 0}$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre