Un conjunto de números enteros positivos se llama fragante si contiene al menos dos elementos y cada uno de sus elementos tiene algún factor primo en común con al menos uno de los elementos restantes. Sea $P(n) =n^2+n+1$. Determinar el menor número entero positivo $b$ para el cual existe algún número entero no negativo $a$ tal que el conjunto
\[\{P(a+1),P(a+2),...,P(a+b)\}\]
es fragante.