Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1985
Sean $R$ y $S$ puntos distintos sobre la circunferencia $\Omega$ tales que $RS$ no es un diámetro de $\Omega$. Sea $\ell$ la recta tangente a $\Omega$ en $R$. El punto $T$ es tal que $S$ es el punto medio del segmento $RT$. El punto $J$ se elige en el arco menor $RS$ de $\Omega$ de manera que $\Gamma$, la circunferencia circunscrita al triángulo $JST$, corta a $\ell$ en dos puntos distintos. Sea $A$ el punto común de $\Gamma$ y $\ell$ más cercano a $R$. La recta $AJ$ corta por segunda vez a $\Omega$ en $K$. Demostrar que la recta $KT$ es tangente a $\Gamma$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre