Un par ordenado $(x, y)$ de enteros es un punto primitivo si el máximo común divisor de $x$ e $y$ es $1$. Dado un conjunto finito $S$ de puntos primitivos, demostrar que existen un entero positivo $n$ y enteros $a_0, a_1,\ldots, a_n$ tales que, para cada $(x,y)$ de $S$, se cumple que
\[a_0x_n + a_1x^{n−1}y + a_2x^{n−2}y^2 +\ldots+ a_{n−1}xy^{n−1} + a_ny^n = 1.\]