Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1999
Sea $I$ el incentro del triángulo acutángulo $ABC$ con $AB\neq AC$. La circunferencia inscrita (o incírculo) $\omega$ de $ABC$ es tangente a los lados $BC$, $CA$ y $AB$ en $D$, $E$ y $F$, respectivamente. La recta que pasa por $D$ y es perpendicular a $EF$ corta a $\omega$ nuevamente en $R$. La recta $AR$ corta a $\omega$ nuevamente en $P$. Las circunferencias circunscritas (o circuncírculos) de los triángulos $PCE$ y $PBF$ se cortan nuevamente en $Q$. Demostrar que las rectas $DI$ y $PQ$ se cortan en la recta que pasa por $A$ y es perpendicular a $AI$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre