Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 2008
Denotamos por $d(m)$ el número de divisores positivos de un entero positivo $m$, y por $\omega(m)$ el número de primos distintos que dividen a $m$. Sea $k$ un entero positivo. Demuestra que hay una infinidad de enteros positivos $n$ tales que $\omega(n)=k$ y $d(n)$ no divide a $d(a^2+b^2)$ para todos $a$ y $b$ enteros positivos tales que $a+b=n$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre