Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 2019
Sea $ABCD$ un cuadrilátero cíclico y $X$ la intersección de las diagonales $AC$ y $BD$. Sean $C_1$, $D_1$ y $M$ los puntos medios de los segmentos $CX$, $DX$ y $CD$, respectivamente. Las rectas $AD_1$ y $BC_1$ se intersecan en $Y$ y la recta $MY$ interseca a las diagonales $AC$ y $BD$ en dos puntos distintos, que llamamos respectivamente $E$ y $F$. Demostrar que la recta $XY$ es tangente a la circunferencia que pasa por $E$, $F$ y $X$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre