Sea $ABCD$ un cuadrilátero convexo que cumple que $\angle DAB=\angle BCD=90^\circ$ y $\angle ABC\gt \angle CDA$. Sean $Q$ y $R$ puntos en los segmentos $BC$ y $CD$, respectivamente, tales que la recta $QR$ interseca las rectas $AB$ y $AD$ en los puntos $P$ y $S$, respectivamente. Se sabe que $PQ=RS$. Sea $M$ el punto medio de $BD$ y sea $N$ el punto medio de $QR$. Demostrar que los puntos $M$, $N$, $A$ y $C$ están en una misma circunferencia.