Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 2028
Sea $n\geq 2$ un entero. Una $n$-upla $(a_1,a_2,\ldots,a_n)$ de enteros positivos no necesariamente distintos se dice que es costosa si existe un entero positivo $k$ tal que \[(a_1+a_2)(a_2+a_3)\cdots(a_{n-1}+a_n)(a_n+a_1)=2^{2k−1}.\]
  1. Encontrar todos los enteros $n\geq 2$ para los cuales existe una $n$-upla costosa.
  2. Demostrar que para todo entero positivo impar $m$ existe un entero $n\geq 2$ tal que $m$ pertenece a una $n$-upla costosa.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre