Sea $ABC$ un triángulo acutángulo que no tiene dos lados con la misma longitud. Las reflexiones del baricentro $G$ y el circuncentro $O$ de $ABC$ con respecto a los lados $BC,CA,AB$ se denotan como $G_1,G_2,G_3$ y $O_1,O_2, O_3$, respectivamente. Demostrar que las circunferencias circunscritas de los
triángulos $G_1G_2C$, $G_1G_3B$, $G_2G_3A$, $O_1O_2C$, $O_1O_3B$, $O_2O_3A$ y $ABC$ tienen un punto en común.