Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 2030
Sea $ABC$ un triángulo con $CA=CB$ y $\angle ACB=120^\circ$ y sea $M$ el punto medio de $AB$. Sea $P$ un punto variable de la circunferencia que pasa por $A$, $B$ y $C$. Sea $Q$ el punto en el segmento $CP$ tal que $QP=2\cdot QC$. Se sabe que la recta que pasa por $P$ y es perpendicular a la recta $AB$ interseca a la recta $MQ$ en un único punto $N$. Demostrar que existe una circunferencia fija tal que $N$ se encuentra en dicha circunferencia para todas las posibles posiciones de $P$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre