Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 2031
Consideremos el conjunto \[A =\left\{1+\tfrac{1}{k}|k=1,2,3,\ldots\right\}.\]
  1. Demostrar que todo entero $x\geq 2$ puede ser escrito como el producto de uno o más elementos de $A$, no necesariamente distintos.
  2. Para todo entero $x\geq 2$, sea $f(x)$ el menor entero tal que $x$ puede ser escrito como el producto de $f(x)$ elementos de A, no necesariamente distintos. Demostrar que existen infinitos pares $(x,y)$ de enteros con $x\geq 2$ e $y\geq 2$, tales que \[f(xy)\lt f(x) + f(y).\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre