Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 2046
Consideremos el triángulo $ABC$ con $\angle BCA\gt 90^\circ$. Sea $R$ el radio del circuncírculo $\Gamma$ de $ABC$. En el segmento $AB$ existe un punto $P$ con $PB=PC$ y tal que la longitud de $PA$ es igual a $R$. La mediatriz de $PB$ corta a $\Gamma$ en los puntos $D$ y $E$. Demostrar que $P$ es el incentro del triángulo $CDE$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre