Sea $ABC$ un triángulo con incentro $I$ y sea $D$ un punto arbitrario en el lado $BC$. La recta que pasa por $D$ y es perpendicular a $BI$ interseca a $CI$ en el punto $E$. La recta que pasa por $D$ y es perpendicular a $CI$ interseca a $BI$ en el punto $F$. Demostrar que el punto simétrico de $A$ respecto de la recta $EF$ está en la recta $BC$.