Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 2059
Sea $ABCD$ un cuadrilátero cíclico con circuncentro $O$. Sea $X$ el punto de intersección de las bisectrices de los ángulos $\angle DAB$ y $\angle ABC$; sea $Y$ el punto de intersección de las bisectrices de los ángulos $\angle ABC$ y $\angle BCD$; sea $Z$ el punto de intersección de las bisectrices de los ángulos $\angle BCD$ y $\angle CDA$ y sea $W$ el punto de intersección de las bisectrices de los ángulos $\angle CDA$ y $\angle DAB$. Sea $P$ el punto de intersección de las rectas $AC$ y $BD$. Supongamos además que los puntos $O$, $P$, $X$, $Y$, $Z$ y $W$ son distintos. Demostrar que $O$, $X$, $Y$, $Z$ y $W$ están sobre una misma circunferencia si y sólo si $P$, $X$, $Y$, $Z$ y $W$ están sobre una misma circunferencia.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre