Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 2064
Sea $s\geq 2$ un entero positivo. Para cada entero positivo $k$ se define su torcimiento $k'$ como sigue: si $k$ se escribe como $as+b$, con $a,b$ enteros no negativos y con $b\lt s$, entonces $k′ = bs+a$.

Sea $n$ un entero positivo y consideremos la sucesión infinita $d_1, d_2,\ldots$ con $d_1=n$ y $d_{i+1}$ el torcimiento de $d_i$ para cada $i$ entero positivo. Demostrar que esta sucesión contiene $1$ si y sólo si el resto de la división de $n$ por $s^2-1$ es $1$ o $s$.

Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre