Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 2097
Si $p,q,r$ son números racionales no nulos tales que $\sqrt[3]{pq^2}+\sqrt[3]{qr^2}+\sqrt[3]{rp^2}$ es también un número racional no nulo, demostrar que \[\frac{1}{\sqrt[3]{pq^2}}+\frac{1}{\sqrt[3]{qr^2}}+\frac{1}{\sqrt[3]{rp^2}}\] es también racional.
pista
Sin soluciones
info
Pista. Puede serte útil utilizar la identidad \[(x+y+z)^3=x^3+y^3+z^3-3(x+y+z)(xy+yz+zx)+3xyz.\]
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre