Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 2118
Sea $ABC$ un triángulo inscrito en la circunferencia $\omega$ de centro $O$. Sean $T$ el punto diametralmente opuesto a $C$ y $T'$ el punto simétrico de $T$ con respecto a la recta $AB$. La recta $BT'$ corta a $\omega$ en un segundo punto $R$. La recta perpendicular a $TC$ que pasa por $O$ corta a la recta $AC$ en $L$. Sea $N$ el punto de intersección de las rectas $TR$ y $AC$. Probar que $CN = 2AL$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre