Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 2217
  1. Se tiene una circunferencia con dos triángulos inscritos $T_1$ y $T_2$. Los vértices de $T_1$ son los puntos medios de los arcos con extremos en los vértices de $T_2$. Consideremos el hexágono intersección de $T_1$ y $T_2$. Demostrar que las diagonales principales de dicho hexágono son paralelas a los lados de $T_1$ y se cortan en un único punto.
  2. El segmento que conecta los puntos medios de los arcos $AB$ y $AC$ de la circunferencia circunscrita al triángulo $ABC$ corta a los lados $AB$ y $BC$ en los puntos $D$ y $K$. Sea $I$ el incentro del triángulo $ABC$. Demostrar que los puntos $A,D,I,K$ son los vértices de un rombo.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre