Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 2282
Consideremos una sucesión $\{x_n\}$ de números en el intervalo $(0,1)$ tal que $x_{n+1}$ se obtiene reordenando los dígitos de $x_n$ que ocupan las posiciones $n+1,n+2,n+3,n+4,n+5$ tras la coma decimal.
  1. Demostrar que dicha sucesión es convergente.
  2. Si $x_0$ es racional, ¿puede ser el límite irracional?
  3. Encontrar un valor de $x_0$ tal que todo elemento de la sucesión sea irracional sin importar cómo se hagan las reordenaciones.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre