Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 2331
Diremos que una sucesión infinita y creciente $a_1\lt a_2\lt a_3\lt\ldots$ de enteros positivos es central si, para todo entero positivo $n$, la media aritmética de los primeros $a_n$ términos de la sucesión es igual a $a_n$. Demostrar que existe una sucesión infinita $\{b_1,b_2,b_3,\ldots\}$ de enteros positivos tal que, para toda sucesión central $\{a_1,a_2,a_3,\ldots\}$, hay infinitos enteros positivos $n$ con $a_n=b_n$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre