Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 2332
Sea $ABC$ un triángulo acutángulo. Tomamos puntos $D$ y $E$ de manera que $B$, $D$, $E$ y $C$ están sobre una recta (en ese orden) y tales que $BD=DE=EC$. Supongamos que el triángulo $ADE$ es acutángulo y sea $H$ su ortocentro. Sean $M$ y $N$ los puntos medios de los segmentos $AD$ y $AE$, respectivamente. Sean $P$ y $Q$ puntos en las rectas $BM$ y $CN$, respectivamente, tales que $D$, $H$, $M$ y $P$ son todos distintos entre sí y concíclicos y $E$, $H$, $N$ y $Q$ son todos distintos entre sí y concíclicos. Demostrar que $P$, $Q$, $N$ y $M$ también son concíclicos.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre