Sea $\{a_1,a_2,a_3,\ldots\}$ una sucesión no decreciente de enteros positivos. Para cada $m\geq 1$, definimos $b_m=\min\{n:a_n\geq m\}$, es decir, $b_m$ es el valor mínimo de $n$ tal que $a_n\geq m$. Si $a_{19}=85$, determinar el máximo valor posible de
\[a_1+a_2+\ldots+a_{19}+b_1+b_2+\ldots+b_{19}.\]