Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 2415
Demostrar que, para cada $n\geq 1$, la sucesión \[2,\ 2^2,\ 2^{2^2},\ 2^{2^{2^2}},\ldots\quad(\text{mod }n)\] es constante a partir de cierto término en adelante.

Nota: la torre de exponentes se define recursivamente como $a_1=2$ y $a_{k+1}=2^{a_k}$ para tod $k\neq 1$. Además, la notación $(\text{mod }n)$ significa que nos quedamos con el resto módulo $n$ de cada elemento $a_k$.

Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre