Sea $a_1,a_2,a_3,\ldots$ una sucesión infinita de números reales positivos que cumplen que $\sum_{j=1}^na_j\geq\sqrt{n}$ para todo $n\geq 1$. Demostrar que, para todo $n\geq 1$, se tiene que
\[\sum_{j=1}^na_j^2\gt\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right).\]