Sea $n\geq 3$ un entero. Se escriben números reales $x_1,x_2,\ldots,x_n$ alrededor de una circunferencia en este orden. Supongamos que
\[r_1=\frac{x_n+x_2}{x_1},\quad r_2=\frac{x_1+x_3}{x_2},\quad r_3=\frac{x_2+x_4}{x_3},\quad\ldots\quad r_n=\frac{x_{n-1}+x_1}{x_n}\]
son todos números enteros. Demostrar que
\[2n\leq r_1+r_2+\ldots+r_n\lt 3n.\]