Solución. Según la condición (a), podemos escribir $E(\frac{N}{3})=111\cdot a$ para cierto número natural $a$ entre $1$ y $9$. Ahora bien, el apartado (b) nos permite desarrollar
\[\frac{n(n+1)}{2}=1+2+\ldots+n=111\cdot a=3\cdot 37\cdot a,\]
de forma que $n(n+1)=2\cdot 3\cdot 37\cdot a$. Por tanto, el producto $2\cdot 3\cdot 37\cdot a$ se tiene que descomponer en producto de dos números consecutivos, lo cual sólo ocurre para $a=6$ y $n=36$. Así tenemos que $E(\frac{N}{3})=666$, es decir, $666\leq\frac{N}{3}<667$. Esta desigualdad es equivalente a $1998\leq N\lt 2001$, lo que nos asegura que $N=2000$ es la solución buscada.