Solución. Supongamos que $A$ y $B$ son dos potencias de $2$ distintas pero con los mismos dígitos (no nulos) reordenados. Vamos a llegar a una contradicción y esto dará respuesta negativa a la pregunta del enunciado. Primero observamos dos propiedades de $A$ y $B$.
- Como los dígitos tanto de $A$ como de $B$ son no nulos, ambos números han de tener el mismo número de cifras significativas. En particular, si suponemos que $A\lt B$, entonces ocurre alguna de las siguientes tres situaciones: $B=2A$ ó $B=4A$ ó $B=8A$ (observa que ambas son potencias de $2$ y $16A$ tiene siempre más cifras que $A$).
- Como los dígitos son los mismos, tenemos que $A\equiv B$ (mód $9$).
Ahora bien, como $A$ y $B$ son primos relativos con $9$ (son potencias de $2$), tenemos que $A\equiv B=2^kA$ (mod $9$) implica $1\equiv 2^k$ (mód $9$). Tanto si $k=1$ como si $k=2$ ó $k=3$ esta congruencia es falsa, lo que nos da la contradicción buscada.