Sean $\Omega$ y $\Gamma$ circunferencias de centros $M$ y $N$, respectivamente, tales que el radio de $\Omega$ es menor que el radio de $\Gamma$. Supongamos que las circunferencias $\Omega$ y $\Gamma$ se cortan en dos puntos distintos $A$ y $B$. La recta $MN$ corta a $\Omega$ en $C$ y a $\Gamma$ en $D$, de forma que los puntos $C,M,N,D$ están sobre esa recta en ese orden. Sea $P$ el circuncentro del triángulo $ACD$. La recta $AP$ corta de nuevo a $\Omega$ en $E\neq A$. La recta $AP$ corta de nuevo a $\Gamma$ en $F\neq A$. Sea $H$ el ortocentro del triángulo $PMN$. Demostrar que la recta paralela a $AP$ que pasa por $H$ es tangente a la circunferencia circunscrita del triángulo $BEF$.