OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Si $x=2$ es solución, sustituyendo en la ecuación original obtenemos que $(2-a)(2-b)=1$ y, si $x=4$ es solución, entonces $(4-a)(4-b)=-1$. Si ambos valores de $x$ son soluciones, entonces $4-a$ y $2-a$ son iguales a $\pm 1$ y, como se diferencian en $2$ unidades, tiene que ser $4-a=1$ y $2-a=-1$, es decir, $a=3$. Sustituyendo $a=3$ en $(2-a)(2-b)=1$, tenemos que $2-b=-1$ y, por tanto, $b=3$. No obstante, $a=b=3$ no cumple $(4-a)(4-b)=-1$ y hemos llegado a una contradicción.