Sean $A,B,C$ los ángulos de un triángulo. Demostrar que
\[\frac{2\,\mathrm{sen}\,A}{A}+\frac{2\,\mathrm{sen}\,B}{B}+\frac{2\,\mathrm{sen}\,C}{C}\leq\left(\frac{1}{B}+\frac{1}{C}\right)\mathrm{sen}\,A+\left(\frac{1}{C}+\frac{1}{A}\right)\mathrm{sen}\,B+\left(\frac{1}{A}+\frac{1}{B}\right)\mathrm{sen}\,C.\]