Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
APMO
OMCC
Retos UJA
Selector
La base de datos contiene 2717 problemas y 972 soluciones.
Problema 2615
Sean $x_1, x_2, \dots, x_n$ números reales positivos con suma $1$. Demostrar que \[\frac{x_1^2}{x_1+x_2} + \frac{x_2^2}{x_2+x_3} + \dots + \frac{x_{n-1}^2}{x_{n-1}+x_n} + \frac{x_n^2}{x_n+x_1} \geq \frac{1}{2}.\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre