Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 263
Dados los números racionales $r$, $q$ y $n$ tales que \[\frac{1}{r+qn}+\frac{1}{q+rn}=\frac{1}{r+q},\] demostrar que $\sqrt{\frac{n-3}{n+1}}$ es un número racional.
pistasolución 1info
Pista. Opera sobre la condición del enunciado para llegar a que $rq(n-1)^2=(r+q)^2$.
Solución. Teniendo en cuenta que una ecuación de la forma $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$ se puede escribir como $(z-x)(z-y)=z^2$, la condición del enunciado se transforma fácilmente en $rq(n-1)^2=(r+q)^2$. Como $r$ y $q$ no pueden ser cero (no se cumpliría la condición del enunciado), deducimos que \[(n-1)^2=\frac{(r+q)^2}{rq}.\] A esta última ecuación también puede llegarse operando directamente sobre la condición del enunciado sin dificultad. Podemos usar esta ecuación para expresar \[\frac{n-3}{n+1}=\frac{(n-3)(n+1)}{(n+1)^2}=\frac{n^2-2n-3}{(n+1)^2}=\frac{(n-1)^2-4}{(n+1)^2}=\frac{(r+q)^2-4rq}{rq(n+1)^2}=\frac{(r-q)^2(n-1)^2}{(r+q)^2(n+1)^2}\] y, por tanto, se tiene que $\frac{n-3}{n+1}$ es el cuadrado de un número racional, como queríamos probar.

Es necesario darse cuenta de que $n$ no puede ser $-1$, pues en tal caso el enunciado no se cumpliría. Por reducción al absurdo, si $n=-1$, la condición del enunciado nos dice que $\frac{1}{r+q}=0$, lo que es una contradicción.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre