Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
APMO
OMCC
Retos UJA
Selector
La base de datos contiene 2717 problemas y 972 soluciones.
Problema 2681
Sea $C$ una circunferencia de radio $R$ y centro $O$, y sea $S$ un punto fijo en el interior de $C$. Sean $AA_0$ y $BB_0$ dos cuerdas perpendiculares que pasan por $S$. Se consideran los rectángulos $SAMB$, $SBN_0A_0$, $SA_0M_0B_0$ y $SB_0NA$. Hallar el conjunto de todos los puntos $M, N_0, M_0, N$ cuando $A$ recorre toda la circunferencia $C$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre