Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
APMO
OMCC
Retos UJA
Selector
La base de datos contiene 2717 problemas y 972 soluciones.
Problema 2705
Sea $ABC$ un triángulo y consideremos triángulos isósceles $BCD$, $CAE$ y $ABF$ exteriores al triángulo $ABC$, con $BC$, $CA$ y $AB$ como sus respectivas bases. Demostrar que las rectas que pasan por $A$, $B$ y $C$ y son perpendiculares a las rectas $EF$, $FD$ y $DE$, respectivamente, son concurrentes.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre