Sean $\mathcal{C}_1$ y $\mathcal{C}_2$ dos circunferencias concéntricas, con $\mathcal{C}_2$ en el interior de $\mathcal{C}_1$. Desde un punto $A$ en $C_1$, se traza la tangente $AB$ a $\mathcal{C}_2$ con $B \in \mathcal{C}_2$. Sea $C$ el segundo punto de intersección de $AB$ con $\mathcal{C}_1$ y sea $D$ el punto medio de $AB$. Una recta que pasa por $A$ corta a $\mathcal{C}_2$ en los puntos $E$ y $F$ de forma que las bisectrices perpendiculares de $DE$ y $CF$ se intersecan en un punto $M$ sobre $AB$. Encontrar justificadamente la razón $\frac{AM}{MC}$.