Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
APMO
OMCC
Retos UJA
Selector
La base de datos contiene 2717 problemas y 972 soluciones.
Problema 2718
Sean $b$ y $n$ enteros positivos con $b\geq 2$. Se define $s_b(n)$ como la suma de las cifras de $n$ expresado en base $b$. ¿Existe algún entero $n\geq 2$ tal que \[s_2(n)\geq s_3(n)\geq\ldots\geq s_{2025}(n)?\]

Nota. Las cifras de $n$ expresado en base $b$ son los números enteros $a_0,a_1,\ldots,a_k$ tales que $n=a_0+a_1b+a_2b^2+\ldots+a_kb^k$ con $a_k\neq 0$ y $0\leq a_i\leq b-1$ para todo $i\in\{0,1,\ldots,k\}$.

Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre