Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
APMO
OMCC
Retos UJA
Selector
La base de datos contiene 2748 problemas y 1042 soluciones.
Problema 2722
Demostrar que todo número complejo no nulo se puede escribir como suma de otros dos cuya diferencia y cuyo cociente sean imaginarios puros.
pistasolución 1info
Pista. Escribe las condiciones como cuatro ecuaciones con cuatro incógnitas (las partes reales e imaginarias de los dos sumandos) con dos parámetros (las partes real e imaginaria del número dado).
Solución. Pongamos que $a+bi\in\mathbb{C}$ es el número complejo no nulo en cuestión y queremos encontrar $z,w\in\mathbb{C}$ tales que $z+w=a+bi$ tales que $z-w$ y $zw^{-1}$ sean imaginarios puros. Si escribimos $z=x+iy$ y $w=u+iv$, tenemos que \[z-w=(x-u)+(y-v)i,\qquad zw^{-1}=\frac{xu+yv}{u^2+v^2}+\frac{yu-xv}{u^2+v^2},\] luego debe ser $x-u=0$ y $xu+yv=0$, pero también tenemos que $x+u=a$ e $y+v=b$, lo que nos da un sistema de cuatro ecuaciones con cuatro incógnitas reales. De $x-u=0$ y $x+u=a$ obtenemos que $x=u=\frac{a}{2}$, con lo que las otras dos ecuaciones quedan $yv=\frac{-1}{4}a^2$ e $y+v=b$, esto es, $y$ y $v$ son soluciones de la ecuación $X^2-bX-\frac{1}{4}a^2=0$ ($X$ es la incógnita), luego podemos tomar $y=\frac{b+\sqrt{b^2+a^2}}{2}$ y $v=\frac{b-\sqrt{b^2+a^2}}{2}$ usando la fórmula para las soluciones de la ecuación de segundo grado. En definitiva, los únicos números (salvo cambiarlos de orden) que resuelven el problema son \[z=\frac{a}{2}+\frac{b+\sqrt{b^2+a^2}}{2}i,\qquad w=\frac{a}{2}+\frac{b+\sqrt{b^2+a^2}}{2}i.\]
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre