Solución. Evidentemente, la cifra de las unidades de $n$ tiene que ser impar. Si $n\geq 11$ y escribimos $n=10x+y$ con $x,y\geq 1$ enteros, siendo $y\leq 9$ impar, como $y^2$ es igual a uno de los números $1,9,25,49,81$ y todos ellos tienen la cifra de las decenas par, tenemos que $n^2=100x^2+20xy+y^2$ es mayor que $100$ y también tiene la cifra de las decenas par. No queda otra que $x=0$, lo que nos lleva a las únicas soluciones $n=1$ y $n=3$.