Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
APMO
OMCC
Retos UJA
Selector
La base de datos contiene 2748 problemas y 1042 soluciones.
Problema 2731
En un triángulo $ABC$, rectángulo en $A$, se traza la altura $AD$, siendo $D$ un punto del lado $BC$. Sean $M$ y $N$ los pies de las bisectrices interiores de los ángulos $C$ y $B$, respectivamente. Sea $P$ el punto de intersección de $AD$ y $MN$. Demostrar que $AP=r$, el radio de la circunferencia inscrita en $ABC$.
pistasolución 1info
Pista. Pon coordenadas con $A=(0,0)$, $B=(b,0)$ y $C=(0,c)$. El teorema de la bisectriz te puede dar directamente las coordenadas de $M$ y $N$ sin calcular las ecuaciones de las bisectrices.
Solución. Pongamos coordenadas de forma que $A=(0,0)$, $B=(c,0)$ y $C=(0,b)$. El teorema de la bisectriz nos dice que los segmentos $AM$ y $MB$ son proporcionales a $b$ y $a$, respectivamente; como suman $c$, tiene que ser $AM=\frac{bc}{a+b}$ y $MB=\frac{ac}{a+b}$. De la misma manera, se tiene que $AN=\frac{bc}{a+c}$ y $NC=\frac{ba}{a+c}$, luego tenemos las coordenadas $M=(\frac{bc}{a+b},0)$ y $N=(0,\frac{bc}{a+c})$. Por lo tanto, la recta $MN$ tiene ecuación $(a+b)x+(a+c)y=bc$ y, por su parte, la recta $AD$ tiene ecuación $cx-by=0$ (ya que pasa por $(0,0)$ y el vector $(c,-b)$ es un vector normal). La intersección de estas dos rectas es el punto \[P=\left(\frac{b^2c}{b^2+c^2+ab+ac},\frac{bc^2}{b^2+c^2+ab+ac}\right)=\left(\frac{b^2c}{a(a+b+c)},\frac{bc^2}{a(a+b+c)}\right),\] donde hemos simplificado usando que $a^2=b^2+c^2$ por el teorema de Pitágoras. La distancia de este punto al origen es \[AD=\sqrt{\left(\frac{b^2c}{a(a+b+c)}\right)^2+\left(\frac{bc^2}{a(a+b+c)}\right)^2}=\sqrt{\frac{b^2c^2(b^2+c^2)}{a^2(a+b+c)^2}}=\frac{bc}{a+b+c},\] donde hemos usado de nuevo el teorema de Pitágoras para simplificar. Esto último es igual al radio de la circunferencia inscrita (ver la nota), lo que concluye la demostración.

Nota. En un triángulo rectángulo de hipotenusa $a$ y catetos $b$ y $c$, el área se puede calcular como $\frac{1}{2}bc$, ya que los catetos hacen de base y altura, y también como $S=rp=\frac{1}{2}(a+b+c)r$. Igualando ambas expresiones, obtenemos que $r=\frac{bc}{a+b+c}$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre