En un triángulo $ABC$, rectángulo en $A$, se traza la altura $AD$, siendo $D$ un punto del lado $BC$. Sean $M$ y $N$ los pies de las bisectrices interiores de los ángulos $C$ y $B$, respectivamente. Sea $P$ el punto de intersección de $AD$ y $MN$. Demostrar que $AP=r$, el radio de la circunferencia inscrita en $ABC$.
Solución. Pongamos coordenadas de forma que $A=(0,0)$, $B=(c,0)$ y $C=(0,b)$. El teorema de la bisectriz nos dice que los segmentos $AM$ y $MB$ son proporcionales a $b$ y $a$, respectivamente; como suman $c$, tiene que ser $AM=\frac{bc}{a+b}$ y $MB=\frac{ac}{a+b}$. De la misma manera, se tiene que $AN=\frac{bc}{a+c}$ y $NC=\frac{ba}{a+c}$, luego tenemos las coordenadas $M=(\frac{bc}{a+b},0)$ y $N=(0,\frac{bc}{a+c})$. Por lo tanto, la recta $MN$ tiene ecuación $(a+b)x+(a+c)y=bc$ y, por su parte, la recta $AD$ tiene ecuación $cx-by=0$ (ya que pasa por $(0,0)$ y el vector $(c,-b)$ es un vector normal). La intersección de estas dos rectas es el punto
\[P=\left(\frac{b^2c}{b^2+c^2+ab+ac},\frac{bc^2}{b^2+c^2+ab+ac}\right)=\left(\frac{b^2c}{a(a+b+c)},\frac{bc^2}{a(a+b+c)}\right),\]
donde hemos simplificado usando que $a^2=b^2+c^2$ por el teorema de Pitágoras. La distancia de este punto al origen es
\[AD=\sqrt{\left(\frac{b^2c}{a(a+b+c)}\right)^2+\left(\frac{bc^2}{a(a+b+c)}\right)^2}=\sqrt{\frac{b^2c^2(b^2+c^2)}{a^2(a+b+c)^2}}=\frac{bc}{a+b+c},\]
donde hemos usado de nuevo el teorema de Pitágoras para simplificar. Esto último es igual al radio de la circunferencia inscrita (ver la nota), lo que concluye la demostración.
Nota. En un triángulo rectángulo de hipotenusa $a$ y catetos $b$ y $c$, el área se puede calcular como $\frac{1}{2}bc$, ya que los catetos hacen de base y altura, y también como $S=rp=\frac{1}{2}(a+b+c)r$. Igualando ambas expresiones, obtenemos que $r=\frac{bc}{a+b+c}$.