| OME Local |
| OME Andaluza |
| OME Nacional |
| OIM |
| IMO |
| EGMO |
| USAMO |
| ASU |
| APMO |
| OMCC |
| Retos UJA |
Observamos en primer lugar que $AN=\frac{\sqrt{3}}{\sqrt{2}}$ sin más que aplicar el teorema de Pitágoras a $ABN$. También se tiene que $CM=\frac{3}{2}$ aplicando el teorema de Pitágoras a $BCM$. Por último, se tiene que $BP=\frac{\sqrt{3}}{2}$ ya que es la mitad de la diagonal del rectángulo. Por lo tanto, las tres medianas tienen longitudes $\frac{\sqrt{3}}{2},\frac{\sqrt{3}}{\sqrt{2}},\frac{3}{2}$, que son números proporcionales a $1,\sqrt{2},\sqrt{3}$ y, de esta forma, hemos respondido al apartado (b).
Dado que el baricentro $G$ corta a cada mediana en segmentos uno doble que el otro, podemos calcular $GN=\frac{1}{3}AN=\frac{1}{\sqrt{6}}$ y $GC=\frac{2}{3}CM=1$. Como también tenemos que $CN=\frac{1}{\sqrt{2}}$, podemos despejar el coseno del ángulo $\angle NGC$ utilizando el teorema del coseno en el triángulo $GCN$: \[\cos\angle CGN=\frac{GN^2+GC^2-CN^2}{2\,GN\cdot GC}=\frac{\frac{1}{6}+1-\frac{1}{2}}{2\cdot\frac{1}{\sqrt{6}}\cdot 1}=\frac{\sqrt{2}}{\sqrt{3}},\] que coincide con el coseno de $\angle ACB$. Como ambos ángulos están entre $0$ y $180$, deben ser iguales. Se razona de la misma forma que $\angle BGN=\angle BAC$ y se razona también que $\angle AGP=90^\circ=\angle ABC$ sin más que comprobar que $BG^2+AG^2=AB^2$.