| OME Local |
| OME Andaluza |
| OME Nacional |
| OIM |
| IMO |
| EGMO |
| USAMO |
| ASU |
| APMO |
| OMCC |
| Retos UJA |
Por otro lado, no pueden ser $x$ e $y$ ambos negativos ya que el miembro de la izquierda de la primera ecuación sería negativo, por lo que podemos suponer que $x$ es positivo e $y$ es negativo (el caso opuesto es análogo ya que sólo hay que cambiar $x$ por $y$). Como cualquier número es mayor o igual que su parte entera, la segunda ecuación nos dice en particular que \[x\geq\lfloor x\rfloor=1-\lfloor y\rfloor\gt 1-y\] y la primera nos dice que $x^2-y^2=1$, luego se tiene que $1+y^2=x^2\gt(1-y)^2$ y esto implica finalmente que $2y\gt 0$, lo que supone una contradicción.
Deducimos que no hay ninguna solución tal que $x$ e $y$ tengan distinto signo, luego $(0,1)$ y $(1,0)$ son las únicas.