Dados dos números naturales $a,b\in\mathbb{N}$, ¿pueden ser $a^2+b$ y $b^2+a$ ambos cuadrados perfectos?
pistasolución 1info
Pista. Fíjate en que si $a^2+b$ es un cuadrado perfecto, entonces $b\geq 2a+1$.
Solución. Veamos que la respuesta es negativa, razonando por reducción al absurdo. Si $a^2+b$ es un cuadrado perfecto, como es mayor que $a^2$, tendrá que ser $a^2+b\geq (a+1)^2$, de donde $b\geq 2a+1$. De la misma forma, si $b^2+a$ es un cuadrado perfecto, tendremos que $a\geq 2b+1\geq 4a+3\gt a$, lo cual es una contradicción.