OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
$a_{1002}$ | $a_{1001}$ | $a_{1000}$ | ... | $a_{1}$ | $a_{2003}$ | $a_{2002}$ | $a_{2001}$ | ... | $a_{1001}$ |
$b_{1}$ | $b_{3}$ | $b_{5}$ | ... | $b_{2003}$ | $b_{2}$ | $b_{4}$ | $b_{6}$ | ... | $b_{2002}$ |
Veamos que la respuesta es negativa para 2004. Razonando por reducción al absurdo, supongamos que la respuesta es afirmativa. Escribiendo los números de la primera fila como $a_k=a_0+k$, los de la segunda fila como $b_k=b_0+k$ y las sumas como $c_k=c_0+k$ para $k\in\{1,\ldots,2004\}$, tenemos que las sumas de los números de estas filas están dadas por \begin{eqnarray*} \sum_{k=1}^{2004}a_k&=&2004a_0+\sum_{k=1}^{2004}k=2004a_0+\frac{2004\cdot 2005}{2}=2004\left(a_0+\frac{2005}{2}\right),\\ \sum_{k=1}^{2004}b_k&=&2004b_0+\sum_{k=1}^{2004}k=2004b_0+\frac{2004\cdot 2005}{2}=2004\left(b_0+\frac{2005}{2}\right),\\ \sum_{k=1}^{2004}c_k&=&2004c_0+\sum_{k=1}^{2004}k=2004c_0+\frac{2004\cdot 2005}{2}=2004\left(c_0+\frac{2005}{2}\right). \end{eqnarray*} Ahora bien, independientemente de la colocación de los $a_k$ y $b_k$, la suma de las dos primeras sumas ha de ser igual a la de la tercera, luego tenemos que \[a_0+b_0+\frac{2005}{2}=c_0.\] Esto es una contradicción ya que $a_0$, $b_0$ y $c_0$ son números enteros mientras que $\frac{2005}{2}$ no lo es.
Nota. En la demostración anterior puede suponerse sin perder generalidad que $a_0=b_0=0$, con lo que $a_k=b_k=k$ para todo $k$ y así simplificar ligeramente la notación.