OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Cada cara tiene 5 diagonales, lo que hace un total de $5\cdot 12=60$ diagonales de todas las caras. Cada par de vértices determina un segmento, luego habrá $\binom{20}{2}=190$ segmentos determinados por cada dos vértices. Finalmente, el número de diagonales del dodecaedro será igual a este número de segmentos descontando las diagonales de las caras y las aristas del poliedro, es decir, $190-60-30=100$.
Nota. Podemos comprobar que se cumple la fórmula de Euler \[C-A+V=2,\] donde $C=12$, $A=30$ y $V=20$ son el número de caras, aristas y vértices, respectivamente.