Dados $a,b,c\in\mathbb{R}$ números positivos tales que $abc=1$, demostrar que
\[\frac{1}{a^3(b+c)}+\frac{1}{b^3(c+a)}+\frac{1}{c^3(a+b)}\geq\frac{3}{2}.\]
pistasolución 1info
Pista. Utiliza la desigualdad de Cauchy-Schwarz, aunque haciendo previamente el cambio de variable $x=\frac{1}{a}$, $y=\frac{1}{b}$, $z=\frac{1}{c}$ puedes simplificar el proceso.
Solución. Haciendo el cambio $x=\frac{1}{a}$, $y=\frac{1}{b}$, $z=\frac{1}{c}$, podemos reescribir la desigualdad del enunciado como
\[\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\geq\frac{3}{2}.\]
La desigualdad de Cauchy-Schwarz nos dice que
\[((y+z)+(x+z)+(x+y))\left(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\right)\geq (x+y+z)^2.\]
De esta desigualdad y de la desigualdad entre las medias aritmética y geométrica, obtenemos que
\[\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\geq\frac{x+y+z}{2}\geq \frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\]
Nota. La misma solución se puede seguir sin el cambio de variable, aunque con él puede que sea más sencillo encontrar la forma de aplicar la desigualdad de Cauchy-Schwarz.