Solución. Podemos simplificar la expresión del enunciado de la siguiente forma:
\begin{eqnarray*}
\frac{p}{q}&=&1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{1319}-2\left(\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{1318}\right)\\
&=&1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{1319}-\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{659}\right)\\
&=&\frac{1}{660}+\frac{1}{661}+\ldots+\frac{1}{1319}
\end{eqnarray*}
Ahora bien, en esta última suma, basta emparejar el primer elemento con el último, el segundo con el penúltimo y así sucesivamente, con lo que llegamos a la siguiente igualdad
\begin{eqnarray*}
\frac{p}{q}&=&\left(\frac{1}{660}+\frac{1}{1319}\right)+\left(\frac{1}{661}+\frac{1}{1318}\right)+\ldots+\left(\frac{1}{989}+\frac{1}{990}\right)\\
&=&\frac{1979}{660\cdot 1319}+\frac{1979}{661\cdot 1318}+\ldots+\frac{1979}{989\cdot 990}
\end{eqnarray*}
Como $1979$ es un número primo y los denominadores anteriores tienen factores menores que $1979$, deducimos que $p$ es múltiplo de $1979$, que es lo que queríamos probar.
Nota. Es interesante observar que $p$ y $q$ bien podrían tener factores comunes, pero hemos encontrado una fracción $\frac{p}{q}$ tal que $p$ es múltiplo de $1979$ y $q$ no, luego el numerador de cualquier fracción equivalente a $\frac{p}{q}$ será múltiplo de $1979$.