Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 404
Sean $p$ y $q$ números enteros tales que \[1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots-\frac{1}{1318}+\frac{1}{1319}=\frac{p}{q}.\] Demostrar que $p$ es divisible entre $1979$.
pistasolución 1info
Pista. Elimina los signos negativos demostrando que la suma es igual a $\frac{1}{660}+\frac{1}{661}\ldots+\frac{1}{1319}$. Ahora observa que $660+1319=1979$. ¿En qué te puede ayudar esto?
Solución. Podemos simplificar la expresión del enunciado de la siguiente forma: \begin{eqnarray*} \frac{p}{q}&=&1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{1319}-2\left(\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{1318}\right)\\ &=&1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{1319}-\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{659}\right)\\ &=&\frac{1}{660}+\frac{1}{661}+\ldots+\frac{1}{1319} \end{eqnarray*} Ahora bien, en esta última suma, basta emparejar el primer elemento con el último, el segundo con el penúltimo y así sucesivamente, con lo que llegamos a la siguiente igualdad \begin{eqnarray*} \frac{p}{q}&=&\left(\frac{1}{660}+\frac{1}{1319}\right)+\left(\frac{1}{661}+\frac{1}{1318}\right)+\ldots+\left(\frac{1}{989}+\frac{1}{990}\right)\\ &=&\frac{1979}{660\cdot 1319}+\frac{1979}{661\cdot 1318}+\ldots+\frac{1979}{989\cdot 990} \end{eqnarray*} Como $1979$ es un número primo y los denominadores anteriores tienen factores menores que $1979$, deducimos que $p$ es múltiplo de $1979$, que es lo que queríamos probar.

Nota. Es interesante observar que $p$ y $q$ bien podrían tener factores comunes, pero hemos encontrado una fracción $\frac{p}{q}$ tal que $p$ es múltiplo de $1979$ y $q$ no, luego el numerador de cualquier fracción equivalente a $\frac{p}{q}$ será múltiplo de $1979$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre